Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 179: 114036, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342549

RESUMEN

Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.


Asunto(s)
Medicamentos Herbarios Chinos , Polifenoles , Espectrometría de Masas en Tándem , Polifenoles/análisis , Fermentación , Cromatografía Liquida , Fenoles/metabolismo , Digestión , Rutina/metabolismo , Colon/metabolismo
2.
Food Res Int ; 165: 112563, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869545

RESUMEN

Gut microbes and microbial metabolites derived from polysaccharides mediate beneficial effects related to polysaccharides consumption. Lycium barbarum polysaccharide (LBP) is the main bioactive components in L. barbarum fruits and possesses considerable health-promoting effects. In the present study, we aimed to investigate whether LBP supplementation influenced host metabolic responses and gut microbiota in healthy mice, and to identify bacterial taxa associated with the observed beneficial effects. Our results indicated that mice supplied with LBP at 200 mg/kg BW showed lower serum total cholesterol (TC), triglyceride (TG), and liver TG levels. LBP supplementation strengthened the antioxidant capacity of liver, supported the growth of Lactobacillus and Lactococcus, and stimulated short-chain fatty acids (SCFAs) production. Serum metabolomic analysis revealed that fatty acid degradation pathways were enriched, and RT-PCR further confirmed that LBP up-regulated the expression of liver genes involved in fatty acid oxidation. The Spearman's correlation analysis indicated that some serum and liver lipid profiles and hepatic SOD activity were associated with Lactobacillus, Lactococcus, Ruminococcus, Allobaculum and AF12. Collectively, these findings provide new evidence for the potential preventive effect of LBP consumption on hyperlipidemia and nonalcoholic fatty liver disease.


Asunto(s)
Microbioma Gastrointestinal , Animales , Ratones , ARN Ribosómico 16S , Metabolómica , Lactobacillus , Ácidos Grasos
3.
Liver Int ; 43(2): 471-489, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385489

RESUMEN

BACKGROUND: Long non-coding RNAs (LncRNAs) have been demonstrated to associate with a variety of cancers. However, the mechanisms of LncRNAs in hepatocellular carcinoma (HCC) progression are still not fully clarified. METHODS: LINC01608 expression level in HCC and adjacent normal tissues was detected by real-time-quantitively PCR (RT-qPCR) in clinical samples and in situ hybridization (ISH) in tissue microarray. Several functional assays were performed to determine the biological effects of LINC01608 in HCC cells in vitro, while subcutaneous xenograft models and lung metastasis models in nude mice and immunohistochemistry (IHC) results showed the role of LINC01608 in HCC progression in vivo. The combination of LINC01608 with miR-875-5p and target genes was elucidated by dual-luciferase report assays, RNA immunoprecipitation (RIP) assays and fluorescence in situ hybridization (FISH) assays. Finally, bioinformatics analysis and chromatin immunoprecipitation (CHIP) were performed to investigate the mechanism of Yin Yang-1 (YY1) regulating LINC01608 transcription. RESULTS: LINC01608 was overexpressed in HCC tissues, and high LINC01608 expression predicted poor overall survival (OS) and disease-free survival (DFS) in HCC patients. LINC01608 could promote HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Furthermore, we demonstrated that LINC01608 could sponge to miR-875-5p and activate the EGFR/ERK pathway. Moreover, we identified transcriptional factor YY1 could bind to the promoter of LINC01608 and induce its transcription. CONCLUSION: LINC01608 could serve as a promising prognostic biomarker of HCC. YY1-activated LINC01608 could promote HCC progression by associating with miR-875-5p to induce the EGFR/ERK signalling pathway. This discovery might provide therapeutic strategies for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones Desnudos , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Receptores ErbB/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/uso terapéutico
4.
Front Neurosci ; 16: 1029495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570854

RESUMEN

The relationship between gut microbiota (GM) and mental health is one of the focuses of psychobiology research. In recent years, the microbial-gut-brain axis (MGBA) concept has gradually formed about this bidirectional communication between gut and brain. But how the GM is involved in regulating brain function and how they affect emotional disorders these mechanisms are tenuous and limited to animal research, and often controversial. Therefore, in this review, we attempt to summarize and categorize the latest advances in current research on the mechanisms of GM and depression to provide valid information for future diagnoses and therapy of mental disorders. Finally, we introduced some antidepressant regimens that can help restore gut dysbiosis, including classic antidepressants, Chinese materia medica (CMM), diet, and exogenous strains. These studies provide further insight into GM's role and potential pathways in emotion-related diseases, which holds essential possible clinical outcomes for people with depression or related psychiatric disorders. Future research should focus on clarifying the causal role of GM in disease and developing microbial targets, applying these findings to the prevention and treatment of depression.

5.
Int J Biol Macromol ; 222(Pt B): 2054-2064, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36209904

RESUMEN

Apple polyphenols are abundantly present in apple pomace, and their applications are limited by the low efficiency of traditional extraction methods and the tendency to pollute the environment. Starch nanoparticles (SNPs) have received much attention due to their renewable, low cost and biocompatibility. The aim of this study was to prepare SNPs of different sizes from corn starch using ultrasonic-assisted chemical precipitation with adsorption of apple polyphenols, investigate the relationship between particle size and adsorption, while experiments were performed to assess antioxidant activity, simulate in vivo digestion and polyphenol release. The results showed that the smaller the particle size of SNPs the higher the adsorption of polyphenols, and the combination of characterization and adsorption kinetics showed that this adsorption was a physicochemical binding process. DPPH radical scavenging activity showed that polyphenols bound to SNPs were more stable than free polyphenols. In vitro simulation of digestion and release processes, SNPs loaded with polyphenols showed better anti-digestive properties, polyphenols are released in small amounts in gastric juices and continuously in intestinal juices. Our results provide a theoretical basis for the direct separation of polyphenols from fruit pomace polyphenol extracts using nanomaterials and the industrial utilization of polyphenol products.


Asunto(s)
Nanoestructuras , Polifenoles , Polifenoles/química , Almidón/metabolismo , Frutas/química , Adsorción , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA